skip to main content


Search for: All records

Creators/Authors contains: "Ishmael, Khaldoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous-wave Doppler radar (CWDR) can be used to remotely detect physiological parameters, such as respiration and heart signals. However, detecting and separating multiple targets remains a challenging task for CWDR. While complex transceiver architectures and advanced signal processing algorithms have been demonstrated as effective for multiple target separations in some scenarios, the separation of equidistant sources within a single antenna beam remains a challenge. This paper presents an alternative phase tuning approach that exploits the diversity among target distances and physiological parameters for multi-target detection. The design utilizes a voltage-controlled analog phase shifter to manipulate the phase correlation of the CWDR and thus create different signal mixtures from the multiple targets, then separates them in the frequency domain by suppressing individual signals sequentially. We implemented the phase correlation system based on a 2.4 GHz single-channel CWDR and evaluated it against multiple mechanical and human targets. The experimental results demonstrated successful separation of nearly equidistant targets within an antenna beam, equivalent to separating physiological signals of two people seated shoulder to shoulder. 
    more » « less
  2. null (Ed.)
    Effective radar cross-section (ERCS) for microwave Doppler radar, is defined by the reflected power from sections of the human body that undergo physiological motion. This paper investigates ERCS for human cardiopulmonary motion of sedentary subjects at three different positions (front, back and side with respect to radar). While human breathing and heartbeat can be measured from all four sides of the body, the characteristics of measured signals will vary with body orientation. Thus, continuous wave radar with quadrature architecture at 2. 4GHz was used to test a sedentary subject for three minutes from three different orientations: front, back and side with respect to radar. The results obtained from the tests showed that physiological motion could be obtained and that distinct patterns emerge due to the differences in the ERCS for each orientation. For the seated subject, back ERCS was higher than for front and side positions. Determining ERCS changes with position may enable determining body orientation with respect to the radar. This research opens further opportunities for development of high-resolution occupancy sensing and emergency search and rescue sensing, where the orientation of a human subject may be unknown ahead of time. 
    more » « less
  3. One deadly aspect of COVID-19 is that those infected can often be contagious before exhibiting overt symptoms. While methods such as temperature checks and sinus swabs have aided with early detection, the former does not always provide a reliable indicator of COVID-19, and the latter is invasive and requires significant human and material resources to administer. This paper presents a non-invasive COVID-19 early screening system implementable with commercial off-the-shelf wireless communications devices. The system leverages the Doppler radar principle to monitor respiratory-related chest motion and identifies breathing rates that indicate COVID-19 infection. A prototype was developed from software-defined radios (SDRs) designed for 5G NR wireless communications and system performance was evaluated using a robotic mover simulating human breathing, and using actual breathing, resulting in a consistent respiratory rate accuracy better than one breath per minute, exceeding that used in common medical practice.Clinical Relevance-This establishes the potential efficacy of wireless communications based radar for recognizing respiratory disorders such as COVID-19. 
    more » « less